EARLY WARNING SYSTEM (PENGGUNAAN WHATSAPP BOT DI BIDANG KESEHATAN)
DOI:
https://doi.org/10.53363/bureau.v3i1.153Keywords:
health, Covid-19, whatsapp bot, early warning system, KesehatanAbstract
Social media has taken on a new function in recent years, serving as both a source of information and a way to participate and communicate. A same scenario happened with WhatsApp; many people use it to obtain updates on Covid-19's health. The goal of this project is to use a WhatsApp Bot to investigate the health sector's early warning system. This study employs a literature review method, which entails examining scholarly publications, books, and research journals. Articles from 2019 to 2021 were selected as inclusion criterion. The findings of the study demonstrate that the usage of WhatsApp Bot in the health industry is critical for early warning systems, particularly during the Covid-19 pandemic. The use of this Whatsapp bot is aimed at assisting healthcare professionals in spotting early warning signs of critically unwell patients in an inpatient hospital, before their clinical state worsens
Downloads
References
Aprillia, J., Gumilar, P., Sugandi, M. S., Komunikasi, P. I., Telkom, U., & Kesehatan, I. (2022). Konstruksi Makna Informasi Kesehatan Covid-19 di Whatsapp oleh Ibu Rumah Tangga di Jepara The Meaning Construction of Covid-19 Health Information in Whatsapp of Housewives in Jepara ) Masuknya Covid-19 ke Indonesia Covid-19 untuk mencari informasi kesehat. Jurnal Communio: Jurnal Ilmu Komunikasi, 11(1).
Bin Lukman, K. U. S., Yuliska, Y., & Najwa, N. F. (2021). Chatbot Sebagai Wadah Informasi Perkembangan Covid-19 di Kota Pekanbaru Menggunakan Platform Whatsapp. IT Journal Research and Development, 5(2), 234–245. https://doi.org/10.25299/itjrd.2021.vol5(2).5842
Da?l?o?lu, N., Yavuz Güzel, E., & Atasoy, A. (2020). Establishing early warning systems by monitoring COVID-19 (SARS-CoV-2) in wastewater. The Bulletin of Legal Medicine, 25(Sp), 28–32. https://doi.org/10.17986/blm.2020.v25i.1402
Databoks. (2021). Indonesia Pengguna WhatsApp Terbesar Ketiga di Dunia. Katadata. https://databoks.katadata.co.id/datapublish/2021/11/23/indonesia-pengguna-whatsapp-terbesar-ketiga-di-dunia
Dewi, D. T. K., Kusumawati, W., & Ismarwati, I. (2019). Effect of health promotion and Whatsapp reminder to self-efficacy of the consumption of Fe tablets adherence among pregnant women. Journal of Health Technology Assessment in Midwifery, 2(1), 23–32. https://doi.org/10.31101/jhtam.683
Dwi Miharja, M. N., Ponco Nugroho, S. S., & Franz, A. (2021). Implementasi Sistem Reminder Jadwal Cuci Darah Pada Pasiean Hemodialisis Dengan Whatsapp Gateway. Indonesian Journal of Business Intelligence (IJUBI), 4(1), 37. https://doi.org/10.21927/ijubi.v4i1.1793
Fauziah, A. N., Maesaroh, S., & Suparti, S. (2022). Efektivitas Penyuluhan BerbasisWhatsappTerhadap Pengetahuan dan Praktek SADARI Saat Pandemi Covid-19. Jurnal Formil (Forum Ilmiah) KesMas Respati, 7(1), 25–32.
Febrianti, H., & Nilasari, P. (2021). Efektivitas Pemantauan Pediatric Early Warning Scoring System Dalam Electronic Health Record. Jurnal Keperawatan Tropis Papua, 04(2).
Gillies, C. E., Taylor, D. F., Cummings, B. C., Ansari, S., Islim, F., Kronick, S. L., Medlin, R. P., & Ward, K. R. (2020). Demonstrating the consequences of learning missingness patterns in early warning systems for preventative health care: A novel simulation and solution. Journal of Biomedical Informatics, 110(August), 103528. https://doi.org/10.1016/j.jbi.2020.103528
Khan, M., Kowsher, M., Nagender Asst Professor, Y., & Patil Asst Professor, K. H. (2017). WhatsApp Auto Responder using Natural Language Processing and AI. International Journal of Computer Engineering & Technology (IJCET), 8(5), 15–22. http://www.iaeme.com/IJCET/index.asp15http://www.iaeme.com/ijcet/issues.asp?JType=IJCET&VType=8&IType=5JournalImpactFactor%0Awww.jifactor.comhttp://www.iaeme.com/ijcet/issues.asp?JType=IJCET&VType=8&IType=5%0Ahttp://www.iaeme.com/IJCET/index.asp15http://w
Mohebi, S., Parham, M., Sharifirad, G., & Gharlipour, Z. (2018). Social Support and Self ? Care Behavior Study. January, 1–6. https://doi.org/10.4103/jehp.jehp
Parlika, R., Pradika, S. I., Hakim, A. M., & Manab, K. R. N. (2020). Bot Whatsapp Sebagai Pemberi Data Statistik COVID-19 Menggunakan PHP, Flask, Dan MySQL. Jurnal Informatika Dan Sistem Informasi (JIFoSI), 1(2 SE-Articles), 282–293. http://jifosi.upnjatim.ac.id/index.php/jifosi/article/view/101
Prasanti, D. (2017). The Portrait of Media Health Information For Urban Community in The Digital Era. Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan Dan Teknologi Komunikasi), 19(2), 149–162.
Qazi, A., Simsekler, M. C. E., & Akram, M. (2021). Efficacy of early warning systems in assessing country-level risk exposure to COVID-19. Geomatics, Natural Hazards and Risk, 12(1), 2352–2366. https://doi.org/10.1080/19475705.2021.1962984
Sary, A. N. (2021). Pemberian Edukasi Tentang Hipertensi Dengan Media WhatsApp Blast Di Puskesmas Dadok Tunggul Hitam Kota Padang. Jurnal Abdimas Saintika, 3(1), 113. https://doi.org/10.30633/jas.v3i1.1049
Unair News. (2021). Pengetahuan dan Keterampilan Perawat dalam Kecepatan dan Akurasi Early Warning System. Unair News.
University of York. (n.d.). Impact of early warning systems on patient outcomes. Centre for Reviews and Dissemination. https://www.york.ac.uk/crd/publications/effectiveness-matters/early-warning-systems/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Riskha Dora Candra Dewi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.